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Abstract - The effectiveness of a CNN-based U-Net architecture in 
enhancing speech signals amidst background noise is evaluated in this 
study. The primary aim is to quantify improvements in speech clarity 
and intelligibility for children experiencing speech perception 
challenges due to urban noise. A comprehensive analysis was 
conducted on a dataset combining clean speech from the RAVDESS 
dataset and urban noise from UrbanSound8K. The audio samples were 
processed using Short-Time Fourier Transform (STFT) and fed into a 
U-Net model. Objective metrics such as SNR, Itakura-Saito distance, 
RMSE, and STOI were computed to assess the enhancements. Results 
were compared to traditional noise reduction methods like Wiener 
filtering and spectral subtraction. The STOI score exhibited a notable 
improvement, rising from 0.71 to 0.83, indicating a marked 
enhancement in speech intelligibility. Furthermore, subjective 
evaluations through the Mean Opinion Score (MOS) highlighted an 
overall positive perception of the enhanced audio quality, confirming 
the effectiveness of the U-Net model in reducing noise and improving 
speech clarity. The results demonstrate that the CNN-based U-Net 
architecture significantly improves speech quality in noisy 
environments compared to traditional methods. These findings suggest 
potential applications in hearing aids and other audio processing 
technologies to enhance communication in challenging acoustic 
settings. 
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1. INTRODUCTION 

 
Single-channel speech enhancement is especially 
significant in hearing aids due to the unique constraints 
and demands of these devices. Hearing aids are typically 
compact and rely on a single microphone, making multi- 
channel techniques like beamforming impractical. Given 
the limited spatial data, single-channel methods must 
effectively distinguish between speech and noise based 
solely on temporal and spectral characteristics. [1] For 
individuals with hearing impairments, speech clarity is 
critical, particularly in noisy environments where 
understanding speech can be difficult. A poorly designed 
enhancement system in a hearing aid could suppress 
noise too aggressively, leading to distorted or unnatural- 
sounding speech, which can cause discomfort and reduce 

intelligibility. In contrast, well-optimized single-channel 
speech enhancement can improve the quality of life for 
users by providing clear and natural speech sounds, 
enabling them to engage more confidently in social 
situations, communicate effectively in work settings, and 
generally interact more easily with their surroundings. 
This significance underscores the need for high- 
performance single-channel enhancement technologies 
that can deliver reliable, high-quality speech clarity in a 
compact form factor, without requiring complex hardware 
or spatial information. 

 

1.1 Background of the Work 

The primary objective of speech enhancement is to 
improve the quality and intelligibility of speech signals, 
especially in the presence of various types of background 
noise and distortions. [2] This goal is crucial in real-world 
scenarios where clear communication is essential, such as 
in telecommunications, hearing aids, speech recognition, 
and voice-controlled devices. Effective speech 
enhancement should be able to suppress noise while 
preserving the clarity and natural quality of the speech 
signal, making it easily understandable for listeners or 
accurately interpretable by automated systems. Achieving 
high-quality speech enhancement is particularly 
challenging in unpredictable environments where noise 
sources can vary widely in both type (e.g., traffic, 
conversations, machinery) and intensity. Despite these 
challenges, the development of robust speech 
enhancement systems is essential for applications in 
which clear speech is a fundamental requirement 

 

 

1.2 Motivation and Scope of the Proposed Work 

Speech enhancement systems must address several 
complex challenges, particularly when used in real-world, 
noisy environments. One significant issue is noise 
variability [3]. Unlike controlled settings, real-world 
environments contain diverse noise types that change 
constantly in terms of intensity and spectral characteristics, 
making noise suppression difficult. Another challenge is the 
limitations imposed by single-channel setups, which are 
commonly used in mobile devices, hearing aids, and other 
portable technology. 
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Single-channel enhancement relies on a single 
microphone, so it lacks spatial information, unlike multi- 
channel setups with multiple microphones. This lack of 
spatial data makes it harder to isolate speech from noise, 
requiring algorithms to depend solely on temporal and 
spectral features. Additionally, achieving a balance 
between noise suppression and the preservation of 
speech quality is difficult, as overly aggressive noise 
reduction methods can distort speech and reduce 
intelligibility. Traditional approaches such as spectral 
subtraction, Wiener filtering, and MMSE-based methods 
have attempted to address these challenges but often fall 
short due to their reliance on specific assumptions or 
mathematical models that do not hold up well in 
complex, non-stationary noise environments. These 
limitations highlight the need for more adaptive and 
data-driven approaches that can handle the dynamic 
nature of real-world noise. 

 
 

2. METHODOLOGY’ 
 

The methodology involved developing a machine 
learning model that enhances speech clarity by 
effectively filtering out background noise. To achieve 
this, we are utilizing a CNN-based U-Net architecture 
trained on carefully preprocessed audio data. [4] The 
methodology consists of multiple stages: data 
preparation, data augmentation, feature extraction, 
model construction, and evaluation. Each step is crucial 
to ensure that the model can generalize well and perform 
effectively in realistic audio environments. 

 

2.1 Data Sources and Preparation 
In any audio-based machine learning task, the quality 
and realism of the training data are paramount. For this, 
we chose to work with two established datasets: 

 RAVDESS (Ryerson Audio-Visual Database of 
Emotional Speech and Song): This dataset 
provides high-quality, clean speech samples 
across various emotions and vocal intensities, 
comprising a total of 1,440 audio clips. The 
diversity in tone and emotional expression makes 
it an excellent foundation for the clean speech 
component of the training data. The model can 
effectively learn various vocal features due to this 
rich variety. 

 UrbanSound8K:. To create realistic noisy 
scenarios, I combined the clean speech from 
RAVDESS with noise samples from the 
UrbanSound8K dataset, which contains 8,650 
sound clips commonly found in urban 
environments, such as traffic, sirens, and people 
talking. These sounds simulate the kind of noise 
the model may encounter in real-world settings, 
providing a robust context for training. 

Since TensorFlow could not directly read these raw 

 
audio files, I first rewrote and downsampled the original 
datasets to 8kHz before uploading them. The 
downsampling to 8kHz allows us to capture most of the 
speech-relevant frequency components without adding 
unnecessary data size, making the training process faster 
and more efficient while still maintaining essential audio 
quality. 

 

2.2 Data Preprocessing 

To prepare the audio files for analysis and training, we 
standardized their length and format to ensure 
consistency across the dataset. First, each audio file was 
loaded and either trimmed or zero-padded to a fixed 
length. [5] This step ensured that all inputs to the model 
had a uniform size, simplifying both preprocessing and 
training processes. To simulate real-world noisy 
environments, we added a small amount of white noise to 
both clean and noisy audio samples. The white noise, 
scaled with a factor of 0.03, acted as a general background 
distraction commonly present in everyday audio signals. 
This addition helped enhance the model's robustness 
against unexpected noise. In addition to white noise, we 
incorporated random samples from the UrbanSound 
dataset into the noisy versions of the RAVDESS speech 
samples. The UrbanSound noise was carefully scaled to 
match the amplitude of the clean speech, creating realistic 
noisy counterparts for each clean speech file. By 
simulating diverse and realistic audio environments, this 
approach enabled the model to adapt to a wide range of 
background interferences effectively. [6] 

 

2.3 Feature Extraction and Augmentation 
To prepare the audio data for training, we employed 
feature extraction and data augmentation techniques to 
optimize the input for the CNN-based model. First, we 
converted time-domain audio signals into frequency- 
domain representations using the Short-Time Fourier 
Transform (STFT). This process generated two- 
dimensional spectrograms, providing both time and 
frequency information, which are well-suited for CNNs. 
From the STFT outputs, we focused on magnitude 
spectrograms, discarding phase information to emphasize 
energy distribution across frequencies, which is more 
relevant for the task. The spectrograms were then 
expanded into a 4D tensor format to ensure compatibility 
with CNN layers, with channels set to 1 for single-channel 
audio data. [7] 
To enhance model robustness, we applied data 
augmentation techniques such as frequency masking 
(hiding random frequency bands) and time masking 
(hiding random time frames) on the spectrograms. These 
methods simulated real-world variations, improving the 
model’s ability to generalize to unseen data. Finally, the 
dataset was split into training and validation sets using a 
carefully chosen split ratio and batch size, balancing 
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memory efficiency and model performance while 
enabling continuous evaluation and tuning during 
training. 

 

2.4 Construction and Training of U-NET Model 

The U-Net model formed the backbone of this project, 
leveraging its ability to capture high spatial detail for 
audio enhancement. Built using Keras, the model’s 
architecture included convolutional and MaxPooling 
layers in the downsampling path, enabling the extraction 
and compression of key features from the spectrograms. 
At its core, bottleneck layers captured the most abstract 
and essential representations of the input audio. The 
upsampling path, aided by attention mechanisms, 
reconstructed the audio by selectively focusing on 
important details, ensuring that critical information was 
preserved. The final output layer generated an enhanced 
spectrogram, which could be converted back to a time- 
domain signal using the inverse STFT. To optimize the 
model for speech enhancement, we used the Adam 
optimizer for its adaptive learning rate and Mean Squared 
Error (MSE) as the loss function to minimize amplitude 
distortions in the spectrograms. Evaluation metrics, 
including both subjective and objective parameters, were 
used to assess the model’s ability to reduce background 
noise and improve speech clarity. These choices ensured a 
balance between effective training and accurate 
enhancement of the audio signals. The training process 
involved multiple epochs, with regular validation to 
monitor performance and prevent overfitting. After 
training, the model was tested on an unseen dataset to 
evaluate its generalization to real-world scenarios. This 
comprehensive evaluation demonstrated the U-Net 
model's capability to enhance speech clarity and 
intelligibility in noisy environments, making it a promising 
solution for practical applications. [8] 

3. RESULT AND DISCUSSION 

To assess the model's performance quantitatively, several 
objective metrics were employed, each offering unique 
insights into the clarity, fidelity, and intelligibility of the 
enhanced speech. The Signal-to-Noise Ratio (SNR) 
measured the clarity of the output audio by comparing the 
speech signal to the noise, with values above 20 dB 
indicating excellent speech quality. In real-world scenarios, 
moderate SNR levels of 10–15 dB are common, while 
higher values reflect significant noise reduction. The 
Itakura-Saito Distance provided a measure of spectral 
distortion between the clean and enhanced speech, where 
lower values, typically around 0.2–0.3, indicated minimal 
spectral differences and closer alignment to the clean 
signal. Additional metrics such as Root Mean Square 
Error (RMSE) evaluated the amplitude differences 
between the clean and enhanced signals, with values 
around 0.1 or lower indicating high fidelity. Lastly, the 

Short-Time Objective Intelligibility (STOI) metric 
assessed speech intelligibility in noisy environments. STOI 
scores closer to 1 suggested excellent intelligibility, with 
scores above 0.75 considered good. These metrics 
collectively provided a robust framework to quantify the 
model's effectiveness in reducing noise and enhancing 
speech quality. [9] 

 
The results are presented in the table below, showing the 
average performance metrics: 

 
METRIC NOISY 

INPUT 
ENHANCED 

OUTPUT 
SNR dB 7.91 28.86 
STOI 0.71 0.83 

 
Table 1: Objective metrics for noisy and enhanced 

speech. 
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Figure 1: Spectrogram, Time-domain signal and Power 

Spectral Density for 3 samples chosen at random 

For a subjective assessment, Mean Opinion Score 
(MOS) was used to gauge human perception of the 
enhanced audio quality. This score ranges from 1 to 5, 
where 5 indicates excellent quality and 1 indicates 
very poor quality. A group of 20 listeners rated several 
enhanced audio samples, and the average MOS is 
reported below: 

 
SAMPLE MOS SCORE 

(MEAN) 
DESCRIPTION 

Sample 1 4.57 Enhanced clarity 

Sample 2 4.25 Noticeable noise 
reduction 

Sample 3 4.86 High intelligibility 
Average 4.56  

 
Table 2: Subjective MOS scores for selected enhanced 

speech samples. 
 

 

4. CONCLUSION 
 

In this paper, we presented the development of a CNN- 
based U-Net model for speech enhancement, 
demonstrating significant improvements in audio quality 
metrics compared to traditional signal processing 
techniques. Our experimental results highlighted notable 
increases in Signal-to-Noise Ratio (SNR), reductions in 
Itakura-Saito Distance, and decreases in Root Mean Square 
Error (RMSE). These outcomes indicate that the model 
effectively suppresses background noise while preserving 

speech intelligibility, making it a promising solution for 
real-world noisy environments. By surpassing 
conventional methods like Wiener Filtering and spectral 

Subtraction, our U-Net-based approach showcases the 
potential of deep learning in revolutionizing speech 
enhancement tasks. 

 
Looking ahead, the implications of our work extend to 
practical applications, such as hearing aids and assistive 
listening devices. Integrating U-Net models into these 
technologies could enable them to dynamically adapt to 
diverse acoustic settings, providing users with clearer audio 
and improved speech comprehension. Future directions 
could involve optimizing the model for real-time processing 
to handle fluctuating noise levels instantly and exploring its 
integration into wearable devices for accessibility. By 
focusing on these advancements, we aim to contribute to 
the development of effective auditory assistive technologies 
that enhance communication and improve the quality of life 
for individuals with hearing impairments. [10] 
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